Endocrine Manifestations Of Pediatric HNF1 β -MODY (MODY 5)

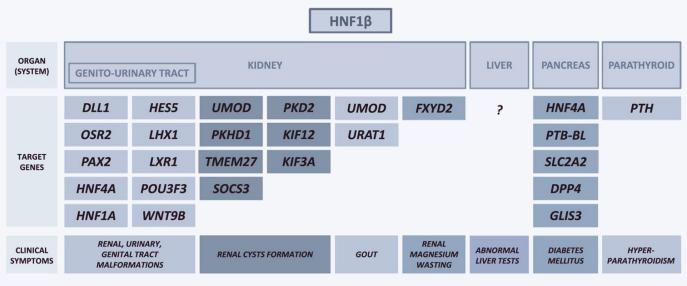
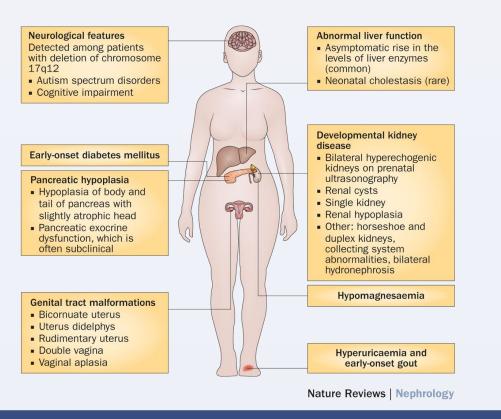
Meghan Craven, MD¹, Vaneeta Bamba, MD^{1,2}, Andrew C. Calabria, MD^{1,2}, and Sara E. Pinney, MD, MS^{1,2}

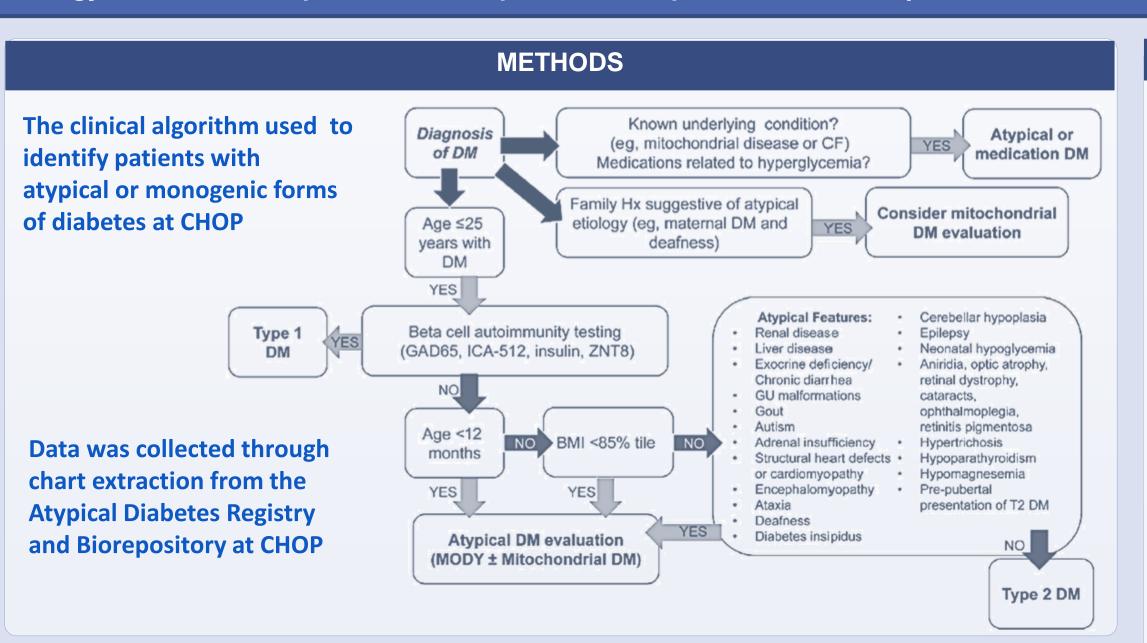
¹ Division of Endocrinology, Children's Hospital of Philadelphia, Philadelphia, PA, USA, ²Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, USA

INTRODUCTION

HNF18-MODY (MODY 5)

Rare form of MODY (1% of all cases) with multi-system involvement including renal cysts and dysplasia, genital tract abnormalities, hyperuricemia, hypomagnesemia, gout, elevated LFTs, and pancreatic exocrine insufficiency.


Figure 2. HNF1 β as a promiscuous transcription factor. Target genes known to be regulated by the HNF1 β transcription factor in several organ systems, responsible for the diverse multisystem clinical signs and symptoms, are depicted.

- Mutations often identified based on a history of renal disease and diabetes mellitus
- 50% of mutations are microdeletions of chromosome 17q12
- 50% of patients have de novo point mutations
- Other endocrine manifestations including dyslipidemia and hyperparathyroidism, not been well-defined in the literature
- No known correlation between site of mutation & clinical features; variable penetrance within families
- Few case series define the disease spectrum in children, which may have more a severe presentation than patients diagnosed with MODY5 as adults

OBJECTIVE

To describe the clinical characteristics of HNF1B-related endocrine disorders in 9 pediatric patients at a single pediatric tertiary care center

Table 1. Patient Demographics

Patient	Age at Diagnosis	Current Age	Sex	Type of Mutation	Birth Weight	BMI at diagnosis	Diabetes Mellitus	Abnormal Lipids	Hyper- parathyroidism
1	9 (2015)	14	F	17q12 del	SGA	19.25 (85%)	Yes	Yes	Yes
2	12 (2017)	15	F	17q12 del	SGA	16.93 (30%)	Yes	Yes	Yes
3	14 (2014)	20	F	17q12 del	AGA	19.92 (54%)	Yes	Yes	No
4	17 (2016)	22	F	17q12 del	SGA	16.52 (1%)	Yes	Yes	No
5	12 (2013)	21		HNF1B c.494G>A p.Arg165His	SGA	15.81 (9%)	Yes	Yes	No
6	12 (2018)	14	М	HNF1 c.1006delC p.His336Thrfs X40	AGA	32.23 (99%)	Yes	Yes	Yes
7	16 (2018)	18	F	HNF1B point mutation	SGA	19.18 (31%)	Yes	Yes	Yes
8	4 (2015)	10	F	HNF1B c.541C>T p.Arg181Ter	LGA	14.55 (26%)	No	No	No
9	15 (2019)	17	Μ	HNF1B c.1431G>C p.Gln477His	SGA	20.66 (53%)	No	Yes	Yes
	Total							89%	55%

Table 2.	Glucose	Homeostasis
	0100000	

	Initial Pre	sentatior	n of Diabetes Me	Current Treatment							
Patient	Known Mutation	Age of Onset	Presentation	Peak Glucose at Diagnosis (mg/dL)	HbA1c at Diagnosis (%)	C-Peptide (ng/mL)	Recent HbA1C (%)	Treatment	TDD (U/kg/day)		
1	No	9	Hyperglycemia	383	13.6	1.72	8.2	Basal Bolus	0.67		
2	No	12	Hyperglycemia	378	7.0	9.5	6.1	Basal Bolus	0.96		
3	No	14	Ketosis	>600	10.09	2.77	6.5	Basal Bolus	0.31		
4	No	17	Ketosis	267	>14	0.6	7.2	Basal Bolus	0.9		
5	No	12	Hyperglycemia	373	6.8	2.98	8.8	Basal Bolus	0.44		
6	Yes	12	Hyperglycemia	214	6.1	19.1	6.3	Basal Only	0.05		
7	Yes	17	Hyperglycemia	245	6.5	12.6	6.4	Lifestyle	-		
8	Yes	No Known Diabetes Mellitus									
9	Yes	No Known Diabetes Mellitus									

Table 3. Lipid Profiles

Patient	Peak Total Cholesterol (mg/dL)	Triglycerides (mg/dL)	LDL (mg/dL)	HDL (mg/dL)	HgbA1c* (%)	Creatinine* (mg/dL)	Management	Fecal Elastase (ug/g)
1	174	116	81	71	6.7	0.5	Dietary Changes	-
2	450	103	281	149	6.2	1.2	Pending Workup	-
3	210	741	86	34	5.9	0.6	Benefiber	>500
4	179	121	104	51	7.2	0.56	None	>200
5	227	162	140	55	8.8	1.46	Dietary Changes	54 (L)
6	323	493	185	37	6.3	2.74	Atorvastatin	-
7	176	142	78	70	6.4	1.84	Dietary Changes	-
8	160	78	90	54	5.2	0.69	None	>500
9	131	136	72	32	5.5	1.1	Dietary Changes	-

Table 4. Calcium Homeostasis

Patient	Peak PTH (pg/mL)	Calcium (mg/dL)	Phosphorous (mg/dL)	Magnesium (mg/dL)	Creatinine* (mg/dL)	Vitamin D 25-OH (ng/mL)	Current Management
1	95.5	10.2	4.2	1.4	0.6	24.2	None
2	312	10.3	5.3	2.0	1.6	14.7	Calcitriol, Ca Carbonate
3	20	9.9	3.0	1.4	0.75	27.9	None
4	14	9.9	2.9	1.1	0.56	-	Magnesium
5	52	9.6	2.6	1.3	1.23	21.1	Cholecalciferol
6	265	9.4	8.1	2.2	0.7	69.2	Cinacalcet
7	364	10.3	5.3	-	0.9	25.6	Calcitriol, Cholecalciferol
8	51.5	10.2	5.2	-	0.4	50.9	None
9	146	9.8	3.5	1.6	1.0	40.1	None

- single center.
- Majority of patients have progressively declining beta-cell function, resulting in diabetes mellitus, with evidence of both insulin deficiency and insulin resistance.
- Nearly all had mixed hyperlipidemia with hypertriglyceridemia predominating
- Over half of the patients had elevated PTH levels preceding the decline in renal function concerning for primary hyperparathyroidism
- for HNF1B-related endocrine disorders including diabetes and hyperparathyroidism

RESULTS

CONCLUSIONS

• One of the largest series describing the clinical characteristics of pediatric patients with HNF1B-MODY at a

• Additional research is needed to determine both ideal preventive approaches and optimal treatment plans